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Executive Summary: 

The accomplishments are in two areas, sensor management and nonlinear filtering. Sensor management can 
be viewed as the problem of determining how to assign sensors to targets, and how to select sensor modes and 
sensor search patterns to maximize their effectiveness against a set of mission requirements. Nonlinear 
filtering refers to the problem of recursively and optimally determining the real-time evolution of the state of a 
target (kinematics, position, etc.) from discretely occurring data, even though both target motion may evolve 
in a nonlinear fashion, and even though measurements may be nonlinearly related to target state variables. 

In the area of sensor management, it was found that the problem of assignment of sensors to targets could be 
posed as a linear programming problem with suitable constraints. One of the problems was how to select the 
objective function to be optimized. One approach is to use the ideas of information theory. The advantage of 
information theoretic metrics is that they measure the relative utility of a wide variety of sensor measurements 
that affect diverse features of the problem such as detection, kinematic localization and classification. This 
project extends the mathematical understanding of sensor management. This includes both numerical and 
analytical studies of various schemes. This year's accomplishments consist of using Interactive Multiple 
Model Kaiman Filters (IMMKF) [Watson, 1992] with a metric called Expected Discrimination Gain (EDG) to 
determine effectiveness of various sensor choices. The IMMKF uses several target motion models and has 
been successfully applied to large multisensor applications [Yed, 1997; Bis,1996]. The optimization of the 
sensor assignments was calculated using Linear Programming. The results were presented at the Spring SPEE 
Conference in Orlando Florida in April 1998, and a preprint appeared in the University of Minnesota Institute 
for Mathematical Analysis (IMA) Preprint Series #1555 April 1998, [Sch,1998]. To summarize, we have 
demonstrated that the formalism of the IMMKF can be used as a framework for computing the expected 
information gain when multiple sensors observe a collection of airborne targets. When combined with the 
IMMKF, discrimination gain is able to recognize target maneuvers and respond by allocating additional sensor 
resource to the maneuvering target. The sensor target assignment that optimizes the total discrimination 
across all of the targets in a surveillance volume can be readily computed. Application of this optimal 
assignment results in improved tracking performance relative to random assignment of sensors to targets or 
fixed round-robin scheduling. 

In the area of nonlinear filtering, we had proposed investigation of a Bayes-FPE-ADI approach: That is, 
nonlinear filtering based on direct numerical solution of the Fokker-Planck equation, and using the Alternating 
Direction Implicit (ADI) technique as the numerical solution approach. The baseline for this work was a two- 
dimensional Bayes-FPE-ADI algorithm previously developed under LMTDS IR&D funding. Our main 
progress involved verification of a critique of this baseline filter by LMTDS consultant Steve Shaffer (a 
professor at the New Mexico Institute of Mines and Technology and an expert in the development of practical 
PDE solvers). To summarize, we verified that the baseline algorithm incorrectly assumes that the filtering 
density is negligible on the boundaries. (In more concrete terms, this amounts to assuming that signal-to-noise- 
ratio is sufficiently high that the location of the target is already approximately known at all times.) We also 
verified that the central differencing scheme used in the baseline algorithm will cause it to be inherently 
numerically unstable regardless of the dimensionality of the problem. 

The personnel supported were Avner Friedman, Keith Kastella, and Wayne Schmaedeke. The technical 
publications stemming from the work are: 

Keith Kastella and Aleksandar Zatazelo,"Nonlinear Filtering for Real-time Joint Tracking and Recognition", 
submitted to IEEE Transactions on Aerospace and Electronic Systems. 

Keith Kastella and Aleksandar Zatazelo, ''Nonlinear Filtering for Low Elevation Targets in the Presence of Multi path 
Propagation", Proceedings of SPIE Aerosense 98. 

K. Kastella. "Joint Multitarget Probabilities for Detection and Tracking", Proceedings of SPIE AeroSense '97, 2 1-25 
April, 1997. 



K. Kastella, M. Biscuso, W. Kober, J. K. Thomas, and A. Wood, "Event-Averaged Maximum Likelihood Estimation 
Tracking for Fire-Control", Proceedings of the 29th Southeastern Symposium on System Theory. March 9-11, 1997, pp. 
440-444. 

Keith Kastella, "Discrimination Gain to Optimize Detection and Classification", IEEE Transactions on Systems, Man 
and Cybernetics, Vol. 27, No. 1, Jan. 1997, pp. 112-116. 

Stan Musick , Keith Kastella and Ronald Mahler, "A practical implementation of joint multitarget probabilities", 
Proceedings of SP1E Aerosense 1998 SPIE Vol. 3374, pp 26-37, 

Wayne Schmaedeke and Keith Kastella,"Discrimination Gain and Multiple Model Filters for Sensor Management in 
Multitarget / Multisensor Tracking", Proceedings ofSPlEAerosense '98. 

1. Objectives 

This project is developing mathematical foundations for sensor management systems and extending the 
mathematical understanding of sensor management and nonlinear filtering. Sensor management can be viewed 
as the problem of determining how to asign sensors to targets, how to select sensor modes, and sensor search 
patterns to maximize their effectiveness against a set of mission requirements. This requires a mathematical 
representation of the current and future probability distributions for targets. One of the central objectives in 
nonlinear filtering (NLF) is to develop efficient methods to compute these probability distributions. 

Until recently, one of the problems facing designers of sensor management systems is that there was little 
consensus on what mathematical quantities should be optimized. Information theory was suggested as a basis 
for computing sensor effectiveness in [Hintz, 1991]. The advantage of information theoretic metrics is that 
they measure the relative utility of a wide variety of sensor measurements that affect diverse features of the 
problem such as detection, kinematic localization and classification. 

2. Status of effort 

Regarding the status of Sensor Management, we were able to successfully use the Integrated Multiple Model 
(IMM) filter concept [Watson, 1992] along with Kaiman filters (IMMKF) to track simulated airborne targets 
with measurements obtained from two or more agile-beam radar systems. We selected a metric called 
Expected Discrimination Gain (EDG) to determine effectiveness of various sensor choices. Also, we allowed 
each radar to have capacity constraints on the number of targets it can observe on each scan. We 
demonstrated that the formalism of the IMMKF can be used as a framework for computing the expected 
information gain when multiple sensors observe a collection of airborne targets. The optimization of the 
sensor assignments was calculated using Linear Programming. 

Regarding the status of nonlinear filtering, we had proposed investigation of a Bayes-FPE-ADI approach: 
That is, nonlinear filtering based on direct numerical solution of the Fokker-Planck equation, and using the 
Alternating Direction Implicit (ADI) technique as the numerical solution approach. The baseline for this work 
was a two-dimensional Bayes-FPE-ADI algorithm previously developed under LMTDS IR&D funding. Our 
main progress involved verification of a critique of this baseline filter by LMTDS consultant Steve Shaffer (a 
professor at the New Mexico Institute of Mines and Technology and an expert in the development of practical 
PDE solvers). To summarize, we verified that the baseline algorithm incorrectly assumes that the filtering 
density is negligible on the boundaries. (In more concrete terms, this amounts to assuming that signal-to-noise- 
ratio is sufficiently high that the location of the target is already approximately known at all times.) We also 
verified that the central differencing scheme used in the baseline algorithm will cause it to be inherently 
numerically unstable regardless of the dimensionality of the problem. 



3.   Accomplishments: This year's accomplishments are in two areas, sensor management and nonlinear 
filtering. 

3.1 Accomplishments in sensor management 

The goal of sensor management systems can be regarded as selecting sensors and sensor dwells to increase the 
information that a data fusion system contains about a surveillance region. Discrimination is related to the 
notions of information and entropy in probability distributions [Hintz, 1991].The discrimination gain is a 
natural measure for use in sensor management systems. Expected discrimination gain is a measure of sensor 
effectiveness that has been used in a wide variety of model applications including multisensor/multitarget 
assignment problems [Sch95]. In the approach presented here this entails predicting the expected 
discrimination gain for each sensor dwell, determining the optimal global assignment of sensors to targets 
given sensor constraints and then applying this solution. 

This proj ect extends the mathematical understanding of sensor management. This includes both numerical 
and analytical studies of various schemes. This year's accomplishments consist of using Interactive Multiple 
Model Kaiman Filters (IMMKF) [Watson, 1992] with a metric called Expected Discrimination Gain (EDG) to 
determine effectiveness of various sensor choices. The IMMKF uses several target motion models and has 
been successfully applied to large multisensor applications [Yed, 1997; Bis,1996]. The optimization of the 
sensor assignments was calculated using Linear Programming. The results were presented at the Spring SPEE 
Conference in Orlando Florida in April 1998, and a preprint appeared in the University of Minnesota Institute 
for Mathematical Analysis (IMA) Preprint Series #1555 April 1998, [Sch, 1998]. 

Some of our past work on sensor management for multitarget/multisensor problems developed discrimination 
gain for the case of a collection of targets described by conventional Kaiman filters. In a generalization of this 
work, a method for computing the expected discrimination gain for multiple model Kaiman filters was 
developed. To understand how expected discrimination gain can be computed in Kaiman filter based tracking 
systems, recall that Kaiman filters maintain estimates of both the target state and the state covariance. A very 
fortunate feature of the conventional Kaiman filters is that the covariance estimate depends only on the 
uncertainty of the measurements, the state uncertainty, and the target motion model, but it does not depend 
directly on the measurements or the target state itself. On the other hand, in conventional Kaiman filters, the 
uncertainty and the expected discrimination gain are insensitive to whether a target is maneuvering or not. 
This undesirable feature reduces the effectiveness of sensor management systems based on them. The IMMKF 
approach overcame this undesirable feature. (In an Extended Kaiman Filter (EKF), the uncertainty can depend 
on the measurements indirectly through the linearization process, but we are not investigating EKF here.) 

In [Sch, 1998], we demonstrated that the formalism of the IMMKF can be used as a framework for computing 
the expected information gain when multiple sensors observe a collection of airborne targets. When combined 
with IMMKF, this expected information gain, called discrimination gain (DG), is able to recognize target 
maneuvers and respond by allocating additional sensor resources to the maneuvering target(s). The 
sensor/target assignment that optimizes the total discrimination across all of the targets in a surveillance 
volume can be readily computed. Application of this optimal assignment results in improved tracking 
performance relative to random assignment of sensors to targets or fixed round-robin scheduling. 

The natural coupling between the IMMKF and sensor management for single target applications was 
recognized in [Watson, 1992] and exploited using measures of effectiveness based on maintaining a desired 
level of position error covariance. Coordination across multiple sensors is desirable in multitarget/multisensor 
applications. Typically, each sensor can observe a fixed number of targets on each sensing cycle. By 
coordinating sensing across platforms, sensing effort is not wasted by having several sensors expend all of 
their capacity on one target while other targets go unobserved. 



The IMMKF used in obtaining our results was designed for an air traffic control application [Bis, 1996], For 
use in air-to-air tracking applications, different versions of the IMMKF must be developed to treat target 
motion on 3-dimensions, and to incorporate range-rate measurements. The IMMKF is based on a stochastic 
hybrid system model with a state evolution equation of the form 

X(*) = f[k -1, X(* -1), m(k)] + g\m(k), k-\, X(k -1), y(k, m(k))\, 

where k is the time index; X(k) is a vector describing the state of the system at time k (e.g. position, 
velocity, turn-rate); /is the state transition function; gis the process noise function; m(k)is the system 
mode during the interval prior to time k (e.g. uniform motion, or constant-rate turn modes); v(k,m(k))\s a 
process noise vector. The process noise g generally depends on the mode m. For example, in straight and 
level flight, the process noise models the effect of small inaccuracies in guidance while for a constant rate 
turn, the process noise also models changes in the turn rate. The system mode m is modeled as a random 
event with Markov dynamics. The IMMKF used here has two modes: mu for nearly uniform motion and mT 

for a nearly constant rate turn. For example, mu (k -1) denotes the event where a target is undergoing 
uniform motion at time k -1 and mT (k) denotes the event where it is turning at time k . 

To compute the expected discrimination gain using an IMMKF filter, suppose that we have a set of 
measurements Z made up to time tk_x. The basic idea is to compute the expected discrimination between the 
predicted density when no observation is made and the density obtained when a particular sensor is used. For 
multivariate Gaussian <70(X) and ^(X) with means X0 and X, and variances I0 and I,, the discrimination 

<7, with respect to q0 is: 

L(qi;q0) = jdXqx(X)\og{q](X)/q0(X)) 

i-,(zI-i0+(xI-x0)(x1-x0)
T) 1 

= -tr 
2 
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To evaluate the relative utility of an observation made at time tk, first note that if no observation is made then 
the target state density is obtained from the IMMKF prediction equations alone. 

Now if a new measurement z obtained with a particular sensor is received at time tk, the new observation set 
is Z' = {z} VJZ . The IMMKF computes the joint conditional density for a target to be in state X and flight 
mode j, p(X,j\Z) = ^p(X\Z). The discrimination of p(X,j\Z) with respect to p0(X,j\Z) is 

I = 2JüK/7O'XlZ')ln(pa,X|Z')//?0a,X|Z)) 

Note that this depends on the particular observation z.   For sensor management, we require the expected 
value EL of this quantity with respect to the conditional density p{z\Z). This is 

EL = ^ ldXdzp(z\Z)pU,X\Z')\n(pU,X\Z')/p0U,X\Z)) 

The integral dz over the new observation density is complicated.  However p(z\ Z) is sharply peaked about 

the expected value of the observation for scan  k5   f*'*"' = H^p~Xk.k~] .    To lowest order we may 



approximate this distribution by a delta function at f . Then defining Z' = {z' }uZ, we can 

approximate 

EL*ZJdXpU,X\h^(pUW')/PoaX\Z))- 
i 

Given the gains EL computed above, we must now assign sensors to targets. The sensors are indexed 
s = l,...,S and the targets are indexed t = l,...,T. Each sensor has a fixed capacity rs. This is the maximum 
number of targets that can be sensed on each sensor scan. The discrimination gain when sensor s is assigned 
to target t is denoted Gst, Our objective is to maximize the total gain across all of the targets. 

The optimization problem considered in this paper is one of assigning sensors to targets in such a way that the 
one step ahead discrimination gain of the track set is maximized. To do this, the one step ahead predicted 
discrimination gain G,;of a track j after it is updated with covariance data from sensor i is determined for all 

pairs ij. This can be formulated as a Linear Programming problem with suitable constraints. The next step in 
the formulation is to consider the situation where more than one sensor may be assigned to the same target. As 
has been previously pointed out [Nash, 1977], one method is to construct pseudo sensors comprised of 
combinations of the basic sensors. This allows any combination of sensors to be assigned to a single target 
simply by considering that a single pseudo sensor has been assigned to it. The number of "sensors" is thus 
increased from S to 2s - 1. The problem is now to make an assignment of these pseudo sensors to the targets in 
an optimal way. 

There are however constraints on this assignment. One of the most important is the maximum tracking 
capacity of a sensor. That is, given a specified time interval, some sensors can scan a certain volume of space 
and also track a specified number of targets. They cannot exceed this maximum tracking capacity in the 
specified time period. If this maximum tracking capacity is known for each of the basic sensors, then this must 
be accounted for when the pseudo sensors are assigned. Surprisingly, the original maximum tracking 
capacities are all that is needed. 

The constraints can be handled exactly as follows. Let the basic sensors be numbered from 1 to S. Let the 
pseudo sensors be numbered from S + 1 up to 2s - 1. For each basic sensor n, let J(n) be the set of integers 
consisting of n and the integer numbers of the pseudo sensors which contain sensor n in their combination. 
There will be 2s'1 integers in each set J(n). These sets J(n) will appear in the constraints that are given for the 
Linear Programming formulation to our optimal assignment problem. 

Example 1. 
For example, with three basic sensors, 5 = 3, and 2s -1 = 7. Let S1,S2,S3,S4,S5,S6, and S7 be the 
designations of the sensors with S4 = {S1,S2}, S5 = {S1,S3}, S6 = {S2,S3}, and S7 = {S1,S2,S3}. The 
integer sets J(n) then contain 23~'= 4 integers and are then: J(l) = {1,4,5,7}, J(2) = {2,4,6,7}, J(3) = {3,5,6,7}. 

We can now state the linear programming problem. 

2*01   T 

maximize      C U |_| | | G. X. 

iDl   yDl 



subject to the constraints 

25G1 

701 
f0TjUl,...,T 

forn = l,...,S 

xt j > 0    for all pairs   i j 
and where z„ is the maximum tracking capacity of the basic sensor n. In the LP solution, each xst will be 

either 0 or 1. When xst=l, sensor 5 is assigned to target /. 

Test Results 

To quantify the efficacy of discrimination gain as a measure of sensor effectiveness we computed the RMS 
position error and total error covariance for three alternative sensor management schemes. These are given in 
Tables 1 and 2. The rows labeled "DG" use discrimination gain with the simplex optimization. The rows 
labeled "Fixed" use a fixed round-robin sensing schedule. There are many possible alternatives. We chose to 
use the schedule where sensor 1 observes target pair (1,5), then (2,6), (3,7 ) while sensor 2 observes targets 
(3,7), then (4,8) and so on. This is simple to implement and spreads the observations out among the targets. 
This coordinates sensing but does not adaptively compute the sensor effectiveness. For the rows labeled 
"Rand" each sensor selects targets at random for each scan cycle. This is the worst case approach in that it 
assumes that the sensing is completely uncoordinated. 

In order to establish a baseline for comparison, we assumed that all of the scheduling schemes maintain central 
tracks updated via report fusion as soon as measurements are available. Although this may be unrealistic for 
some applications, it enables simple direct comparison of the three schemes. 

Sensor and target parameters used to test sensor effectiveness measure. 

Tgtl Tgt2 Tgt3 Tgt4 Tgt5 Tgt6 Tgt7 Tgt8 Avg 
DG RMS (m) 85 76 83 93 76 74 73 75 80 
DGDet 25 14 19 1470 14 14 454 10 252 
Fixed RMS 90 76 81 110 78 76 79 84 85 
Fixed Det 32 14 19 2824 19 14 525 25 434 
Rand RMS 82 90 83 109 83 95 95 80 90 
Rand Det 19 19 19 2293 19 32 902 19 415 

Table 1 - 
Test results obtained for 10 runs of 2-sensor closing target scenario. Use of discrimination gain (DG) to select 
the optimal sensor assignment reduces the average track error as measured by both the RMS position error and 
the determinant of the average covariance (highlighted column at right). DG is compared to a fixed sensor 
schedule and to a random sensor schedule (Rand) that simulates the situation where there is no coordination 
between the sensors. DG provides the most benefit against target 4 which maneuvers during the scenario. 



Tgtl Tgt2 Tgt3 Tgt4 Tgt5 Tgt6 Tgt7 Tgt8 Avg 

DG RMS (m) 77 81 80 102 87 73 80 88 84 

DGDet 11 20 14 1850 25 7.6 454 24 300 

Fixed RMS 91 86 85 111 78 77 85 91 89 

Fixed Det 32 19 19 2824 14 11 19 32 371 

Rand RMS 85 94 92 116 86 105 93 90 95 

Rand Det 19 32 25 2824 19 52 792 19 472 

Table 2 - 
Test results obtained for 10 runs of transiting target scenario are qualitatively similar to results for closing 
target scenario (Table 1). 

Discussion 

To summarize, we have demonstrated that the formalism of the IMMKF can be used as a framework for 
computing the expected information gain when multiple sensors observe a collection of airborne targets. 
When combined with the DVCVIKF, discrimination gain is able to recognize target maneuvers and respond by 
allocating additional sensor resource to the maneuvering target. The sensor target assignment that optimizes 
the total discrimination across all of the targets in a surveillance volume can be readily computed. Application 
of this optimal assignment results in improved tracking performance relative to random assignment of sensors 
to targets or fixed round-robin scheduling. 

The IMMKF used in this assessment was designed for an air traffic control application. For use in air-to-air 
tracking applications, different versions of the EVDVIKF must be developed to treat target motion in 3- 
dimensions and to incorporate range-rate measurements. Another topic that must be examined is the use of 
simpler filters that can still support discrimination gain evaluation. For example, the adaptive single model 
Kaiman filter can also be used in this application but was not studied here. It may be that for some 
applications such as tracking low-priority targets, the computational simplicity of the single model filter 
outweighs its disadvantages relative to the IMMKF. This study has assumed that the target detection 
probability is 1 and that there is no clutter. Furthermore, it was assumed that the track is a confirmed target. 
However, if the track is a tentative target, then additional information is obtained when the target is observed 
with the sensor.   These effects can be included in the discrimination gain calculations. 

One might expect the improved performance for the maneuvering target to come at the expense of some loss 
of performance for the non-maneuvering targets. However, this is not the case. By improving sensor 
allocation across all of the targets, average performance is improved for both the maneuvering and non- 
maneuvering targets. Finally, this study has addressed sensor effectiveness independent of the tactical or 
strategic utility of knowledge about the targets. In order to address this aspect of the problem, discrimination 
must be combined with a means of assessing preferences as well. 

3.2 Accomplishments in nonlinear filtering (NLF) 

The problem addressed in this task is as follows: A sensor with a nonlinear measurement model f(z | x) collects 
a data-stream Z* : zo ,zi Zk from a single moving target whose state x is assumed to evolve continuously in 
time in a nonlinear fashion governed by a stochastic PDE (partial differential equation). The filtering (i.e., a 
posteriori) density 

fkiic(x\Zk) 

contains all information necessary to compute the target's state after collection of the latest datum Zk . The goal 
of real-time nonlinear filtering is to provide a computationally tractable means of recursively computing the 
filtering density ^/t+y \k+i(x I Zk+1) at the time of the next measurement Zk+i from the filtering density fk\k(x IZ ) 



at the time of the current measurement zk . According to Theorem 6.1 of Jazwinksi's well-known textbook on 
filtering theory [Jazw,1970, p. 165], this recursion can be accomplished via Bayes' rule: 

k+1 f(z^ \x) fk+,MZk) 
A+,li+,fX|    ;   "   \f(zk+Ay)fk+,k(y\zk)dy 

where fk+i \k(* \Zk) is a solution of a partial differential equation called the Fokker-Planck equation (FPE). The 
obvious approach is to solve the FPE through direct numerical PDE solution techniques based on grid-based, 
finite-difference approximations of differential operators. When Jazwinski's textbook first appeared in 1970, 
good numerical FPE-solver techniquess were already well-known-the Alternating Direction Implicit (ADI) 
method, for example, dates from the mid-1960s [Wahs, 1966]. Nevertheless, the Bayes-FPE approach was 
dismissed at the time as computationally intractable for real-time application. For example, in introducing their 
"Gaussian sum" approximate-NLF technique in 1971, Sorenson and Alspach wrote: 

"Unfortunately, although the manner in which the [a posteriori] density evolves with time and additional 
measurement data can be described in terms of differential, or difference, equations...these relations are generally 
very difficult to solve either in closed form or numerically, so that it is usually impossible to determine the a 
posteriori density for specific applications." [Soren, 1971, p. 465] 

In fact, until recently it was thought that true NLF was computationally intractable in real time applications 
except under very special conditions. In 1995, however, Prof. Boris Rozovskii of the University of Southern 
California Center for Applied Mathematics (CAMS) introduced LMTDSE to a radical new approach called the 
"spectral separation scheme" (S3). S3 makes real-time NLF possible by separating it into two parts: a 
computationally demanding part that can be completed off-line (on supercomputers, if necessary) and an online 
part that requires roughly the same computational load as a Kaiman filter. S has been implemented on 
conventional workstations for problems involving up to nine state variables. CAMS has also applied S to very- 
low-observable Infra-Red Search and Track (IRST) problems, using it to detect and track targets in -9 dB 
SNR's. 

Under 1998 LMTDSE ER&D funding, CAMS has extended this particular algorithm to detect and track multiple 
very-low-observable targets from IRST data. In addition, under a joint $150K/year grant by LMTDS and the 
Canadian national MITACS research consortium, Prof Michael Kouritzin of the University of Alberta is 
developing the Infinite-Dimensional Exact (IDEX) filter {Kour, 1998], a new real-time nonlinear filtering 
approach he invented in 1996 under LMTDS funding [Kour, 1996]. LMTDS has applied an early version of 
Prof. Kouritzin's IDEX filter to an air traffic control problem [Kas-Kour, 1996]. LMTDS is also internally 
developing an innovative new approximate nonlinear filter called the Fast Approximate Bayesian (FAB) filter. 

Computational processing power has increased greatly in the thirty years since the Bayes-FPE and ADI 
techniques were introduced. For this reason, in 1996 LMTDSE decided that it would be worthwhile to re- 
investigate numerical FPE-solver approaches for NLF. A multigrid-based FPE solver and the S filter were the 
main elements of a white paper submitted to Wright Labs that helped initiate the Nonlinear Filtering for Target 
Identification (NOFTID) solicitation. Because the multigrid FPE solver subsequently proved to be 
computationally unfeasible, LMTDS solicited the advice of Steve Shaffer (a professor at the New Mexico 
Institute of Mines and Technology and an expert in the development of practical PDE solvers). Prof. Shaffer 
directed our attention to the ADI approach and, in particular, to the specific pages in Strikwerda's textbook [Stri, 
1989, pp. 142-153] describing its implementation. He also informed us that the development of real-time FPE- 
solver techniques is a basic research problem and sketched the outlines of an appropriate research program. A 
two-dimensional Bayes-FPE-ADI nonlinear filtering algorithm was coded under LMTDS IR&D funding. In the 
97/98 continuation proposal for this year's project [Fried, 1998], this algorithm was cited as the baseline for the 
NLF task that was initiated this year; and Prof. Shaffer's recommendations formed the heart of the NLF research 
program proposed there: 



"ADI is a so-called 0(N) algorithm, which means that its computational complexity grows linearly with the size of 
the finite-element grid used to discretize the problem. One of the primary objectives of this proposed new research 
will be to extend and quantify these preliminary results...[T]he issue of boundary conditions for the class of 
Fokker-Planck equations that arise in NLF is not well-understood at this point and requires further study. A 
promising approach to the boundary value problem is to use multi-resolution methods to embed the grid for the 
region of interest into a larger but lower resolution grid. This approach lends itself to Fast Adaptive Composite 
(FAC) methods that have been developed in the context of problems such as oil field modeling. Extension of these 
rules to NLF appears very promising, exploiting the fact that the boundary condition on the coarse grid is simple 
because it occurs at a large distance from the region of interest (usually the density goes to 0 exponentially at co). 
Once the coarse grid solution is computed, it can be used to approximate an improved boundary condition for the 
fine-grid region of interest." [Fried, 1998] 

Our main progress this year involved verification of Prof. Shaffer's critique of the baseline Bayes-FPE-ADI 
filter. On the one hand, Prof. Shaffer pointed out that the baseline algorithm does not take proper account of 
boundary conditions because it incorrectly assumes that the filtering density is negligible on the boundaries. 
This assumption is valid only if the filtering density can be assumed to be contained in the computational grid. 
(In more concrete terms, assuming that the tails of the filtering density are negligible at the boundaries amounts 
to assuming that signal-to-noise-ratio is sufficiently high that the location of the target is already approximately- 
known at all times.) Otherwise, significant portions of the "tails" of the filtering density will lie outside the grid 
and probability mass will be, in effect, "clipped off." This results in loss of probability mass at the boundaries 
and subsequent corruption of the solution in the interior of the region of interest. Though this problem can be 
avoided by making the grid large enough to contain the entire region of interest, this would result in 
computational intractability. In order to avoid intractability, one must develop new adaptive composite grid 
methods. 

On the other hand, Prof. Shaffer pointed out that the central differencing scheme used in the baseline Bayes- 
FPE-ADI algorithm will lead to serious numerical instability. We have verified that this also is the case. In 
filtering problems, the convection term of the FPE dominates the diffusion term. Under such circumstances, 
central differencing results in loss of probability mass not only at the boundaries but throughout the region of 
interest, and thus can result in negative-valued solutions to the FPE. Indeed, it is well known in the 
computational fluid dynamics community that central differencing of the convection term can result in numerical 
instabilities [Fletch, 1998, p. 296]. Central differencing of a dominant convection term is so well known an error, 
in fact, that it is cited as such in Numerical Recipes in C [Press, 1992, p. 840]. 

Lockheed Martin/IMA postdoctoral fellow Dr. Aleksander Zatezalo verified the predicted misbehavior of central 
differencing of the FPE in a simple one-dimensional model problem. He showed that the predicted difficulties 
(numerical instability, negative probability mass) become apparent as the target is localized and the probability 
density function becomes sharply peaked. He also verified that these problems can be eliminated by replacing 
central-differencing of the convection term with upwind-differencing. Based on Dr. Zatezalo's experiments, 
LMTDS believes that the "blooming" effects observed in the performance of the baseline Bayes-FPE-ADI filter 
result from improper (e.g. nonconservative and unstable) finite-difference approximations to the FPE. As a 
result, the baseline algorithm will be inherently numerically unstable regardless of the dimensionality of the 
problem. 

Though in principle these problems could be addressed by using upwind differencing in place of central 
differencing, this would produce difficulties of a different nature (e.g., reduction of accuracy from second-order 
to first-order). More advanced differencing techniques exist which avoid the problems associated with both 
central differencing and upwind differencing. These concepts represent the logical direction that further work 
should take. 
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